Reklama

Reklama

Technologia mRNA zostanie z nami na długo. Na szczęście

Prace nad wykorzystaniem technologii mRNA w szczepionkach czy lekach rozwijały się od trzech dekad, jednak pandemia dodała im przyspieszenia. Zaprocentuje to rozwojem nie tylko preparatów do walki z innymi chorobami zakaźnymi, ale i nowatorskimi terapiami przeciwnowotworowymi. Dr hab. Piotr Rzymski, biolog medyczny z Uniwersytetu Medycznego w Poznaniu nie ma wątpliwości, że to przyszłość medycyny.

Monika Wysocka, PAP Zdrowie: - Czym szczepionki mRNA różnią się od tradycyjnych?

Reklama

Dr hab. Piotr Rzymski: - Przede wszystkim tym, że nie zawierają patogenów lub całych ich fragmentów. Najbardziej klasyczne rozwiązania szczepionkowe wykorzystują drobnoustroje żywe, ale osłabione na tyle, by nie były w stanie wywołać ciężkiego przebiegu choroby, bądź inaktywowane czyli zabite, które nie są w stanie namnażać się w organizmie. Takie rozwiązania stosuje się od dawna - podaje się do organizmu gotowy wzorzec, który umożliwia zbudowanie odporności układu immunologicznego wobec patogenu.

- Szczepionki mRNA działają zupełnie inaczej, bo dostarczają naszym komórkom instrukcję, w jaki sposób wyprodukować fragment patogenu. Przepis na ten fragment zawarty jest właśnie w cząsteczce informacyjnego RNA. Szczepionki przeciw COVID-19 opracowane w takiej technologii pozwalają naszym komórkom na produkcję białka S, zwanego popularnie "kolcem" - to najważniejszy element koronawirusa, który umożliwia mu zakażanie naszych komórek. Mechanizm preparatów mRNA jest zupełnie inny, ale ostatecznie we wszystkich szczepionkach chodzi o to samo - by wyszkolić nasz układ odporności do rozpoznawania i niszczenia patogenu. 

W zasadzie nie jest to nowa technologia, wymyślona w czasie obecnej pandemii do walki z COVID-19... 

- To prawda, tego typu technologii nie da się przecież opracować w kilka miesięcy, czy nawet kilka lat. Stoi ona na fundamencie wielkich odkryć biologii komórki i biologii molekularnej. Pierwsze próby ze szczepionkami sięgają lat 90., gdy w Instytucie Pasteura podano myszom eksperymentalną szczepionkę tego typu przeciw grypie. Okazało się, że była immunogenna, ale nośnik, w którym umieszczano cząsteczki mRNA, okazał się zbyt toksyczny, aby zastosować go u ludzi. Zaczęto więc szukać lepszych wehikułów dla mRNA, a jednocześnie próbowano podawać je bez nośnika, w nagiej formie. Niestety, podane w tej formie, bardzo szybko się degradowały. Cząsteczki mRNA są niestabilne, a na domiar złego podane do organizmu potrafią być rozpoznawane przez układ immunologiczny i niszczone.

- Postęp naukowo-technologiczny, który się dokonał na przestrzeni ostatnich dekad pozwolił pokonać bariery związane ze stabilnością mRNA oraz z dostarczaniem go do komórek. Przełom dokonał się w roku 2012, gdy jako nośnik dla mRNA zaczęto wykorzystywać otoczki nanolipidowe. Udało się też zrozumieć, że obecność urydyny (jeden z budulców RNA - przyp. red.) w mRNA umożliwia atakowanie tych cząsteczek przez układ immunologiczny. Zastąpiono ją więc bardzo podobną cząsteczką 1-metylo-pseudourydyny, która również występuje naturalnie w komórkach. Nie wpływa to na instrukcje, które niesie taki mRNA, a pozwala mu dotrzeć do naszych komórek i spełnić swoją funkcję. To właśnie z powodu zastosowania tego zmyślnego zabiegu w opisie szczepionek mRNA przeciw COVID-19 znajdziemy informacje, że zawierają modyfikowane nukleotydy. 

Wróćmy do szczepionek...

- Szczepionki mRNA przeciw COVID-19 są pierwszymi preparatami tego typu, które zostały autoryzowane do użytku, aczkolwiek, tak jak wspominałem, już wcześniej intensywnie pracowano nad tą technologią i testowano ją, również w badaniach klinicznych. Kiedyś musi być ten pierwszy raz, energią wyzwalającą okazała się pandemia, na którą musieliśmy odpowiedzieć. I tu duża zasługa mniejszych firm, np. Moderny czy BioNTechu, o których przed 2020 r., pewnie mało kto słyszał. Kiedy ta pierwsza otrzymała w lutym 2020 r. pierwszą partię swojego kandydata na szczepionkę, to jeszcze nie było jasne, czy w ogóle będzie ona potrzebna, niektórzy liczyli, że problem COVID-19 rozwiąże się bez konieczności jej stosowania.

- Szybko stało się jasne, że jest zupełnie inaczej, że dławi nas kryzys zdrowotny, gospodarczy, wszelaki. Bardzo szybkie rozpoczęcie prac, planowanie kolejnych faz badań w trakcie trwania poprzednich i bezprecedensowe tempo prac ekspertów instytucji regulatorowych zaowocowały: dziś mamy dwie autoryzowane szczepionki mRNA przeciw COVID-19, a kolejne są na zaawansowanym etapie badań. W przyszłości będziemy mieć natomiast szczepionki mRNA przeciw innym chorobom.

Jakich jeszcze chorób mogą dotyczyć?

- Obecnie toczy się ponad 40 badań klinicznych szczepionek mRNA. Połowa dotyczy chorób zakaźnych i w tej puli około 60 proc. stanowią oczywiście szczepionki przeciwko COVID-19.

- Reszta na tak powszechne infekcje jak: choroba wywoływana przez wirusa cytomegalii, wirusa Epsteina-Barra (EBV), wirusa Zika, wirusa RSV, przeciwko grypie pandemicznej. Na początku 2021 roku Moderna ogłosiła rozpoczęcie badań klinicznych pierwszej fazy szczepionki mRNA przeciw HIV. Ma dwóch kandydatów na tę szczepionkę, których będzie testować i czas pokaże, czy to rozwiązanie nie okaże się przełomem w walce z tym skomplikowanym wirusem.

- Trwają też prace nad szczepionką przeciwko wirusowi Nipah, który od 20 lat odpowiada za wybuchy epidemiczne w Bangladeszu, Malezji i Singapurze i figuruje na liście Światowej Organizacji Zdrowia jako zagrożenie epidemiczne, do pilnych działań badawczo-rozwojowych. Dlaczego? Wirus Nipah jest wirusem odzwierzęcym, zakażenie nim może prowadzić między innymi do układowego zapalenia naczyń, płuc i mózgu. Leczenie ciężkich powikłań oddechowych i neurologicznych, jakie wywołuje, wymaga intensywnej terapii, a śmiertelność określa się w granicach 40 - 75 proc. Jest to wirus wysoce niebezpieczny, na domiar złego ma długi czas wylęgania, niekiedy nawet do 45 dni. Koniecznie więc należy mieć na niego plan B, już teraz, kiedy to jeszcze nie stanowi globalnego problemu.

Spore nadzieje wiąże się też ze szczepionkami mRNA w kierunku nowotworów.

- To prawda. Od lat prowadzi się badania przeciwnowotworowych preparatów mRNA. Mają one stymulować układ odporności pacjenta - tak, by rozpoznawał białka zmienione w nowotworowych komórkach. Układ immunologiczny ma przecież za zadanie nie tylko zwalczać patogeny, które próbują wtargnąć do naszego organizmu, ale również eliminować nieprawidłowo zmienione komórki. Niestety, to nie zawsze się udaje w przypadku nowotworów. Jednak coraz więcej rozumiemy w zakresie ich biologii molekularnej, specyficznych mutacji, które w nich występują.

- Przeciwnowotworowe preparaty mRNA mają więc na celu wprowadzenie instrukcji, służącej do wyprodukowania zmienionego przez mutacje białka i jego zaprezentowania układowi odporności. Dzięki temu zostaje on przeszkolony i może rozpocząć walkę ze zmienionymi nieprawidłowo komórkami. Proszę zwrócić uwagę, że tego typu rozwiązanie umożliwia tworzenie preparatów spersonalizowanych dla potrzeb danego pacjenta. Wymaga to wpierw zidentyfikowania z jakim typem nowotworu mamy do czynienia, z jakim profilem mutacji. Następnym krokiem jest uzyskanie odpowiednio skonstruowanej cząsteczki mRNA. 

Niektórzy obawiają się wprowadzania obcego mRNA do naszych komórek. Co pan odpowie na te obawy?

- W skrócie można powiedzieć, że wszystkie preparaty mRNA zamieniają malutką populację komórek, głównie mięśniowych, w fabrykę określonego białka. Tymczasowo oczywiście, bo mRNA nie jest cząsteczką trwałą - po wykonaniu swojego zadania jest degradowane w komórce przez specyficzne enzymy. A komórki, do których dotarło mRNA, również zostają ostatecznie usunięte z naszego organizmu. A to dlatego, że po produkcji białka, komórka prezentuje je na swojej powierzchni, co umożliwia reakcje układu odporności, związane z produkcją przeciwciał i odpowiedzią komórkową. W ramach tej drugiej, przeszkolone cytotoksyczne limfocyty namierzają komórki, które prezentują obcy element wirusa i niszczą je.

- To właśnie dlatego między innymi po podaniu szczepionki odczuwamy po pewnym czasie ból ramienia w miejscu wkłucia. Podsumowując - po cząsteczce mRNA, która zostaje wprowadzona do naszego organizmu nie pozostanie ślad. Dla porównania - skutki zakażania koronawirusem mogą być bardzo poważne, niekiedy tragiczne, a konsekwencje przechorowania ciągnąć się miesiącami.

Czytaj dalej >>>

***Zobacz także***

Dowiedz się więcej na temat: szczepionki | technologia mRNA | pandemia | Covid-19

Reklama

Reklama

Reklama

Strona główna INTERIA.PL

Polecamy

Rekomendacje